// // Copyright (c) 2016 jackw01 // This code is distrubuted under the MIT License, see LICENSE for details // #include #include #include #include "RTClib.h" // // Adjust these variables to taste // // Pin Assignments const int pinLeds = 3; const int pinButton = 4; const int pinBrightness = 0; const int neoPixelRingSize = 24; // Number of NeoPixels in ring // Default colors CRGB red = CRGB(255, 25, 0); CRGB orange = CRGB(255, 78, 0); CRGB yellow = CRGB(255, 237, 0); CRGB green = CRGB(0, 255, 23); CRGB cyan = CRGB(0, 247, 255); CRGB blue = CRGB(0, 21, 255); CRGB magenta = CRGB(190, 0, 255); CRGB white = CRGB(255, 255, 255); CRGB off = CRGB(0, 0, 0); // Clock face colors // red, orange, yellow, green, cyan, blue, magenta, and white are acceptable, along with CRGB(r, g, b) const int colorSchemeMax = 7; const CRGB colorSchemes[colorSchemeMax + 1][4] = {{off, // Color when only one is needed (deprecated) red, // Color for hour display green, // Color for minute display blue}, // Color for second display {CRGB(0, 0, 0), 0xffa54f, 0xffa048, CRGB(0, 130, 255)}, {CRGB(0, 0, 0), 0xffa54f, 0xffa048, CRGB(255, 25, 0)}, {CRGB(0, 0, 0), 0xffffff, 0xffffff, CRGB(0, 130, 255)}, {CRGB(0, 0, 0), 0xffffff, 0xffffff, CRGB(255, 25, 0)}, {CRGB(0, 0, 0), CRGB(64, 0, 128), CRGB(255, 72, 0), CRGB(255, 164, 0)}, {CRGB(0, 0, 0), CRGB(255, 25, 0), CRGB(255, 164, 0), CRGB(255, 224, 0)}, {CRGB(0, 0, 0), CRGB(0, 0, 255), CRGB(0, 164, 255), CRGB(0, 224, 255)}}; // Setup ends // Code starts here const uint8_t PROGMEM gamma[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36, 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99,101,102,104,105,107,109,110,112,114, 115,117,119,120,122,124,126,127,129,131,133,135,137,138,140,142, 144,146,148,150,152,154,156,158,160,162,164,167,169,171,173,175, 177,180,182,184,186,189,191,193,196,198,200,203,205,208,210,213, 215,218,220,223,225,228,231,233,236,239,241,244,247,249,252,255 }; CRGB leds[neoPixelRingSize]; RTC_DS1307 rtc; int clockMode, colorScheme; int clockModeMax = 4; int buttonState = 0; const int minBrightness = 3; int counter = 0; int timer = 0; CRGB handColor, hourColor, minuteColor, secondColor; void setup() { Serial.begin(115200); // Init FastLED FastLED.addLeds(leds, neoPixelRingSize); //FastLED.setCorrection(TypicalSMD5050); FastLED.setTemperature(Halogen); FastLED.show(); Wire.begin(); rtc.begin(); pinMode(pinButton, INPUT); colorScheme = EEPROM.read(0); clockMode = EEPROM.read(1); handColor = colorSchemes[colorScheme][0]; hourColor = colorSchemes[colorScheme][1]; minuteColor = colorSchemes[colorScheme][2]; secondColor = colorSchemes[colorScheme][3]; } void loop() { if (digitalRead(pinButton) == LOW && counter >= 14) { counter = 0; delay(280); if (digitalRead(pinButton) == LOW) { counter = 0; colorScheme ++; if (colorScheme > colorSchemeMax) colorScheme = 0; EEPROM.write(0, colorScheme); handColor = colorSchemes[colorScheme][0]; hourColor = colorSchemes[colorScheme][1]; minuteColor = colorSchemes[colorScheme][2]; secondColor = colorSchemes[colorScheme][3]; } else { clockMode ++; if (clockMode > clockModeMax) clockMode = 0; EEPROM.write(1, clockMode); } } showClock(); delay(20); counter ++; if (counter > 40) counter = 40; timer ++; if (timer > 255) timer = 0; } void showClock() { int brightnessPotValue = map(analogRead(pinBrightness), 0, 1023, minBrightness, 255); FastLED.setBrightness(brightnessPotValue); if (clockMode == 0) ringClock(); else if (clockMode == 1) dotClock(); else if (clockMode == 2) rainbowDotClock(); else if (clockMode == 3) timeColorClock(); else if (clockMode == 4) glowClock(); } // Show a ring clock void ringClock() { clearLeds(); DateTime now = rtc.now(); int newHour; int newMinute; int newSecond; int hour; if (now.hour() > 12) hour = (now.hour() - 12) * (neoPixelRingSize / 12); else hour = now.hour() * (neoPixelRingSize / 12); newHour = hour + int(map(now.minute(), 0, 59, 0, (neoPixelRingSize / 12) - 1)); newMinute = int(map(now.minute(), 0, 59, 0, neoPixelRingSize - 1)); newSecond = int(map(now.second(), 0, 59, 0, neoPixelRingSize - 1)); if (newMinute > newHour) { for (int i = 0; i < newMinute; i++) leds[i] = minuteColor; for (int i = 0; i < newHour; i++) leds[i] = hourColor; } else { for (int i = 0; i < newHour; i++) leds[i] = hourColor; for (int i = 0; i < newMinute; i++) leds[i] = minuteColor; } leds[newSecond] = secondColor; FastLED.show(); } // Show a more traditional dot clock void dotClock() { clearLeds(); DateTime now = rtc.now(); int newHour; int newMinute; int newSecond; int hour; if (now.hour() > 12) hour = (now.hour() - 12) * (neoPixelRingSize / 12); else hour = now.hour() * (neoPixelRingSize / 12); newHour = hour + int(map(now.minute(), 0, 59, 0, (neoPixelRingSize / 12) - 1)); newMinute = int(map(now.minute(), 0, 59, 0, neoPixelRingSize - 1)); newSecond = int(map(now.second(), 0, 59, 0, neoPixelRingSize - 1)); for (int i = newHour - 1; i < newHour + 2; i++) leds[wrap(i)] = hourColor; leds[newMinute] = minuteColor; leds[newSecond] = secondColor; FastLED.show(); } // Show a dot clock with hands that change color based on their position void rainbowDotClock() { clearLeds(); DateTime now = rtc.now(); int newHour; int newMinute; int newSecond; int hour; if (now.hour() > 12) hour = (now.hour() - 12) * (neoPixelRingSize / 12); else hour = now.hour() * (neoPixelRingSize / 12); newHour = hour + int(map(now.minute(), 0, 59, 0, (neoPixelRingSize / 12) - 1)); newMinute = int(map(now.minute(), 0, 59, 0, neoPixelRingSize - 1)); newSecond = int(map(now.second(), 0, 59, 0, neoPixelRingSize - 1)); CRGB newHourColor = Wheel(int(map(newHour, 0, 12, 0, 255))); CRGB newMinuteColor = Wheel(int(map(now.minute(), 0, 59, 0, 255))); CRGB newSecondColor = Wheel(int(map(now.second(), 0, 59, 0, 255))); for (int i = newHour - 1; i < newHour + 2; i++) leds[wrap(i)] = newHourColor; leds[newMinute] = newMinuteColor; leds[newSecond] = newSecondColor; FastLED.show(); } // Show a dot clock where the color is based on the time void timeColorClock() { clearLeds(); DateTime now = rtc.now(); int newHour; int newMinute; int newSecond; int decimalHour; int hour; if (now.hour() > 12) hour = (now.hour() - 12) * (neoPixelRingSize / 12); else hour = now.hour() * (neoPixelRingSize / 12); newHour = hour + int(map(now.minute(), 0, 59, 0, (neoPixelRingSize / 12) - 1)); newMinute = int(map(now.minute(), 0, 59, 0, neoPixelRingSize - 1)); newSecond = int(map(now.second(), 0, 59, 0, neoPixelRingSize - 1)); decimalHour = now.hour() + map(now.minute() + map(now.second(), 0, 59, 0, 1), 0, 59, 0, 1); CRGB pixelColor = Wheel(map((20 - decimalHour) % 24, 0, 24, 0, 255)); for (int i = newHour - 1; i < newHour + 2; i++) leds[wrap(i)] = pixelColor; leds[newMinute] = pixelColor; leds[newSecond] = pixelColor; FastLED.show(); } // Show a dot clock where the hands overlap with additive blending void glowClock() { clearLeds(); DateTime now = rtc.now(); int newHour; int newMinute; int newSecond; int hour; if (now.hour() > 12) hour = (now.hour() - 12) * (neoPixelRingSize / 12); else hour = now.hour() * (neoPixelRingSize / 12); newHour = hour + int(map(now.minute(), 0, 59, 0, (neoPixelRingSize / 12) - 1)); newMinute = int(map(now.minute(), 0, 59, 0, neoPixelRingSize - 1)); newSecond = int(map(now.second(), 0, 59, 0, neoPixelRingSize - 1)); for (int i = -6; i < neoPixelRingSize + 6; i++) { int j; for (j = 0; j <= 4; j++) { if (newHour + j == i || newHour - j == i) blendAdd(wrap(i), CRGB(255, 0, 0), 1 - mapFloat(j, 0, 6, 0.1, 0.99)); } for (j = 0; j <= 2; j++) { if (newMinute + j == i || newMinute - j == i) blendAdd(wrap(i), CRGB(0, 255, 0), 1 - mapFloat(j, 0, 3, 0.1, 0.99)); } for (j = 0; j <= 1; j++) { if (newSecond + j == i || newSecond - j == i) blendAdd(wrap(i), CRGB(0, 0, 255), 1 - mapFloat(j, 0, 1, 0.1, 0.65)); } } FastLED.show(); } void clearLeds() { for (int i = 0; i < neoPixelRingSize; i++) leds[i] = CRGB(0, 0, 0); } // Enhanced additive blending void blendAdd(int position, CRGB color, double brightness) { leds[position].r += color.r * brightness; leds[position].g += color.g * brightness; leds[position].b += color.b * brightness; } // Wrap around LED ring int wrap(int i) { if (i >= neoPixelRingSize) return i - neoPixelRingSize; else if (i < 0) return neoPixelRingSize + i; else return i; } // Because Arduino does not float mapFloat(float x, float in_min, float in_max, float out_min, float out_max) { return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min; } // Input a value 0 to 255 to get a color value. // The colours are a transition r - g - b - back to r. CRGB Wheel(byte WheelPos) { WheelPos = 255 - WheelPos; if (WheelPos < 85) return CRGB(255 - WheelPos * 3, 0, WheelPos * 3); else if (WheelPos < 170) { WheelPos -= 85; return CRGB(0, WheelPos * 3, 255 - WheelPos * 3); } else { WheelPos -= 170; return CRGB(WheelPos * 3, 255 - WheelPos * 3, 0); } }