293 lines
7.5 KiB
C++
293 lines
7.5 KiB
C++
//
|
|
// Copyright (c) 2016-2018 jackw01
|
|
// This code is distrubuted under the MIT License, see LICENSE for details
|
|
//
|
|
|
|
#include <math.h>
|
|
#include <FastLED.h>
|
|
#include <Wire.h>
|
|
#include <EEPROM.h>
|
|
#include <RTClib.h>
|
|
|
|
#include "config.h"
|
|
|
|
CRGB leds[ledRingSize];
|
|
RTC_DS1307 rtc;
|
|
|
|
// Globals to keep track of state
|
|
int clockMode, colorScheme;
|
|
int lastLoopTime = 0;
|
|
int lastButtonClickTime = 0;
|
|
int lastDebugMessageTime = 0;
|
|
uint8_t currentBrightness;
|
|
uint8_t previousBrightness[16];
|
|
DateTime now;
|
|
|
|
void setup() {
|
|
// Begin serial port
|
|
Serial.begin(serialPortBaudRate);
|
|
|
|
// Init FastLED
|
|
FastLED.addLeds<NEOPIXEL, pinLeds>(leds, ledRingSize);
|
|
FastLED.setTemperature(Halogen);
|
|
FastLED.show();
|
|
|
|
// Connect to the RTC
|
|
Wire.begin();
|
|
rtc.begin();
|
|
|
|
// Set button pin
|
|
pinMode(pinButton, INPUT);
|
|
|
|
// Read saved config from EEPROM
|
|
colorScheme = EEPROM.read(eepromAddrColorScheme);
|
|
clockMode = EEPROM.read(eepromAddrClockMode);
|
|
|
|
// If button is pressed at startup, light all LEDs
|
|
if (digitalRead(pinButton) == LOW) {
|
|
for (int i = 0; i < ledRingSize; i++) leds[i] = white;
|
|
FastLED.show();
|
|
delay(60000);
|
|
}
|
|
}
|
|
|
|
void loop() {
|
|
int currentTime = millis();
|
|
if (currentTime - lastLoopTime > runLoopIntervalMs) {
|
|
lastLoopTime = millis();
|
|
// Handle button
|
|
if (digitalRead(pinButton) == LOW && currentTime - lastButtonClickTime > buttonClickRepeatDelayMs) {
|
|
delay(buttonLongPressDelayMs);
|
|
if (digitalRead(pinButton) == LOW) {
|
|
lastButtonClickTime = currentTime;
|
|
colorScheme ++;
|
|
if (colorScheme >= colorSchemeCount) colorScheme = 0;
|
|
EEPROM.write(0, colorScheme);
|
|
} else {
|
|
clockMode ++;
|
|
if (clockMode >= ClockModeCount) clockMode = 0;
|
|
EEPROM.write(1, clockMode);
|
|
}
|
|
}
|
|
|
|
// Print debug message
|
|
if (currentTime > lastDebugMessageTime + debugMessageIntervalMs) {
|
|
lastDebugMessageTime = currentTime;
|
|
printDebugMessage();
|
|
}
|
|
|
|
// Update brightness - do a moving average to smooth out noisy potentiometers
|
|
int sum = 0;
|
|
for (uint8_t i = 15; i > 0; i--) {
|
|
previousBrightness[i] = previousBrightness[i - 1];
|
|
sum += previousBrightness[i];
|
|
}
|
|
previousBrightness[0] = map(analogRead(pinBrightness), 0, 1023, minBrightness, 255);
|
|
sum += previousBrightness[0];
|
|
currentBrightness = sum / 16;
|
|
FastLED.setBrightness(currentBrightness);
|
|
|
|
// Show clock
|
|
now = rtc.now();
|
|
clearLeds();
|
|
showClock();
|
|
}
|
|
}
|
|
|
|
// Display the current clock
|
|
void showClock() {
|
|
switch (clockMode) {
|
|
case ClockModeRingClock:
|
|
ringClock();
|
|
break;
|
|
case ClockModeDotClock:
|
|
dotClock();
|
|
break;
|
|
case ClockModeDotClockColorChange:
|
|
rainbowDotClock();
|
|
break;
|
|
case ClockModeDotClockTimeColor:
|
|
timeColorClock();
|
|
break;
|
|
case ClockModeGlowClock:
|
|
glowClock();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Print debugging info over serial
|
|
void printDebugMessage() {
|
|
Serial.print("Current date/time: ");
|
|
DateTime now = rtc.now();
|
|
Serial.print(now.year(), DEC);
|
|
Serial.print("/");
|
|
Serial.print(now.month(), DEC);
|
|
Serial.print("/");
|
|
Serial.print(now.day(), DEC);
|
|
Serial.print(" ");
|
|
Serial.print(now.hour(), DEC);
|
|
Serial.print(":");
|
|
Serial.print(now.minute(), DEC);
|
|
Serial.print(":");
|
|
Serial.print(now.second(), DEC);
|
|
Serial.println();
|
|
Serial.print("Display mode: ");
|
|
Serial.println(clockMode);
|
|
Serial.print("Color scheme: ");
|
|
Serial.println(colorScheme);
|
|
Serial.print("Brightness: ");
|
|
Serial.println(currentBrightness);
|
|
Serial.println("");
|
|
}
|
|
|
|
// Show a ring clock
|
|
void ringClock() {
|
|
int h = hourPosition();
|
|
int m = minutePosition();
|
|
int s = secondPosition();
|
|
|
|
if (m > h) {
|
|
for (int i = 0; i < m; i++) leds[i] = minuteColor();
|
|
for (int i = 0; i < h; i++) leds[i] = hourColor();
|
|
} else {
|
|
for (int i = 0; i < h; i++) leds[i] = hourColor();
|
|
for (int i = 0; i < m; i++) leds[i] = minuteColor();
|
|
}
|
|
|
|
if (showSecondHand) leds[s] = secondColor();
|
|
|
|
FastLED.show();
|
|
}
|
|
|
|
// Show a more traditional dot clock
|
|
void dotClock() {
|
|
int h = hourPosition();
|
|
int m = minutePosition();
|
|
int s = secondPosition();
|
|
|
|
for (int i = h - 1; i < h + 2; i++) leds[wrap(i)] = hourColor();
|
|
leds[m] = minuteColor();
|
|
if (showSecondHand) [s] = secondColor();
|
|
|
|
FastLED.show();
|
|
}
|
|
|
|
// Show a dot clock with hands that change color based on their position
|
|
void rainbowDotClock() {
|
|
int h = hourPosition();
|
|
int m = minutePosition();
|
|
int s = secondPosition();
|
|
|
|
CRGB newHourColor = CHSV(map(now.hour(), 0, 24, 0, 255), 255, 255);
|
|
CRGB newMinuteColor = CHSV(map(now.minute(), 0, 59, 0, 255), 255, 255);
|
|
CRGB newSecondColor = CHSV(map(now.second(), 0, 59, 0, 255), 255, 255);
|
|
|
|
for (int i = h - 1; i < h + 2; i++) leds[wrap(i)] = newHourColor;
|
|
leds[m] = newMinuteColor;
|
|
if (showSecondHand) leds[s] = newSecondColor;
|
|
|
|
FastLED.show();
|
|
}
|
|
|
|
// Show a dot clock where the color is based on the time
|
|
void timeColorClock() {
|
|
int h = hourPosition();
|
|
int m = minutePosition();
|
|
int s = secondPosition();
|
|
float decHour = decimalHour();
|
|
|
|
CRGB pixelColor = CHSV((uint8_t)mapFloat(fmod(20.0 - decHour, 24.0), 0.0, 24.0, 0.0, 255.0), 255, 255);
|
|
|
|
for (int i = h - 1; i < h + 2; i++) leds[wrap(i)] = pixelColor;
|
|
leds[m] = pixelColor;
|
|
if (showSecondHand) leds[s] = pixelColor;
|
|
|
|
FastLED.show();
|
|
}
|
|
|
|
// Show a dot clock where the hands overlap with additive blending
|
|
void glowClock() {
|
|
int h = hourPosition();
|
|
int m = minutePosition();
|
|
int s = secondPosition();
|
|
|
|
for (int i = -6; i < ledRingSize + 6; i++) {
|
|
int j;
|
|
for (j = 0; j <= 4; j++) {
|
|
if (h + j == i || h - j == i) blendAdd(wrap(i), CRGB(255, 0, 0), 1 - mapFloat(j, 0.0, 6.0, 0.1, 0.99));
|
|
}
|
|
for (j = 0; j <= 2; j++) {
|
|
if (m + j == i || m - j == i) blendAdd(wrap(i), CRGB(0, 255, 0), 1 - mapFloat(j, 0.0, 3.0, 0.1, 0.99));
|
|
}
|
|
if (showSecondHand) {
|
|
for (j = 0; j <= 1; j++) {
|
|
if (s + j == i || s - j == i) blendAdd(wrap(i), CRGB(0, 0, 255), 1 - mapFloat(j, 0.0, 1.0, 0.1, 0.65));
|
|
}
|
|
}
|
|
}
|
|
|
|
FastLED.show();
|
|
}
|
|
|
|
// Get positions mapped to ring size
|
|
int hourPosition() {
|
|
if (twelveHour) {
|
|
int hour;
|
|
if (now.hour() > 12) hour = (now.hour() - 12) * (ledRingSize / 12);
|
|
else hour = now.hour() * (ledRingSize / 12);
|
|
return hour + int(map(now.minute(), 0, 59, 0, (ledRingSize / 12) - 1));;
|
|
} else {
|
|
int hour = now.hour() * (ledRingSize / 24);
|
|
return hour + int(map(now.minute(), 0, 59, 0, (ledRingSize / 24) - 1));;
|
|
}
|
|
}
|
|
|
|
int minutePosition() {
|
|
return map(now.minute(), 0, 59, 0, ledRingSize - 1);
|
|
}
|
|
|
|
int secondPosition() {
|
|
return map(now.second(), 0, 59, 0, ledRingSize - 1);
|
|
}
|
|
|
|
float decimalHour() {
|
|
return (float)now.hour() + mapFloat(now.minute() + mapFloat(now.second(), 0.0, 59.0, 0.0, 1.0), 0.0, 59.0, 0.0, 1.0);
|
|
}
|
|
|
|
// Get colors
|
|
CRGB hourColor() {
|
|
return colorSchemes[colorScheme][0];
|
|
}
|
|
|
|
CRGB minuteColor() {
|
|
return colorSchemes[colorScheme][1];
|
|
}
|
|
|
|
CRGB secondColor() {
|
|
return colorSchemes[colorScheme][2];
|
|
}
|
|
|
|
// Clear the LED ring
|
|
void clearLeds() {
|
|
for (int i = 0; i < ledRingSize; i++) leds[i] = CRGB(0, 0, 0);
|
|
}
|
|
|
|
// Enhanced additive blending
|
|
void blendAdd(int position, CRGB color, float factor) {
|
|
leds[position].r += color.r * factor;
|
|
leds[position].g += color.g * factor;
|
|
leds[position].b += color.b * factor;
|
|
}
|
|
|
|
// Wrap around LED ring
|
|
int wrap(int i) {
|
|
if (i >= ledRingSize) return i - ledRingSize;
|
|
else if (i < 0) return ledRingSize + i;
|
|
else return i;
|
|
}
|
|
|
|
// Because Arduino does not
|
|
float mapFloat(float x, float inMin, float inMax, float outMin, float outMax) {
|
|
return (x - inMin) * (outMax - outMin) / (inMax - inMin) + outMin;
|
|
}
|