code cleanup

This commit is contained in:
jackw01 2018-09-08 19:56:52 -07:00
parent e819bee468
commit 758ad73185
2 changed files with 256 additions and 336 deletions

96
config.h Normal file
View File

@ -0,0 +1,96 @@
//
// WS2812 LED Analog Clock Firmware
// Copyright (c) 2016-2018 jackw01
// This code is distrubuted under the MIT License, see LICENSE for details
//
#ifndef CONFIG_H
#define CONFIG_H
#include <Arduino.h>
#include <FastLED.h>
// IO Pin Assignments
const uint8_t pinLeds = 3;
const uint8_t pinButton = 4;
const uint8_t pinBrightness = 0;
// Number of LEDs in ring
const int ledRingSize = 24;
// Default colors - tweaked to look right on WS2812Bs
CRGB red = CRGB(255, 0, 0);
CRGB orange = CRGB(255, 78, 0);
CRGB yellow = CRGB(255, 237, 0);
CRGB green = CRGB(0, 255, 23);
CRGB cyan = CRGB(0, 247, 255);
CRGB blue = CRGB(0, 21, 255);
CRGB magenta = CRGB(190, 0, 255);
CRGB white = CRGB(255, 255, 255);
CRGB off = CRGB(0, 0, 0);
// Default clock face colors
// red, orange, yellow, green, cyan, blue, magenta, and white are acceptable, along with CRGB(r, g, b)
const int colorSchemeCount = 7;
const CRGB colorSchemes[colorSchemeCount][4] = {
{red, // Color for hour display
green, // Color for minute display
blue}, // Color for second display
{ CRGB(255, 255, 255), CRGB(255, 255, 255), CRGB( 0, 130, 255) },
{ CRGB(255, 255, 255), CRGB(255, 255, 255), CRGB(255, 25, 0) },
{ CRGB( 64, 0, 128), CRGB(255, 72, 0), CRGB(255, 164, 0) },
{ CRGB(255, 25, 0), CRGB(255, 84, 0), CRGB(255, 224, 0) },
{ CRGB( 0, 0, 255), CRGB( 0, 84, 255), CRGB( 0, 255, 255) },
{ CRGB(255, 0, 96), CRGB(255, 84, 0), CRGB( 0, 255, 164) }
};
// Clock settings
const int buttonClickRepeatDelayMs = 1500;
const int buttonLongPressDelayMs = 300;
const bool showSecondHand = true;
const bool twelveHour = true;
// Serial
const int serialPortBaudRate = 115200;
const int debugMessageIntervalMs = 5000;
// Clock modes
typedef enum {
ClockModeRingClock,
ClockModeDotClock,
ClockModeDotClockColorChange,
ClockModeDotClockTimeColor,
ClockModeGlowClock,
ClockModeCount
} ClockMode;
// Brightness
const uint8_t minBrightness = 4;
// Run loop
const int runLoopIntervalMs = 30;
// EEPROM Addresses
const uint16_t eepromAddrColorScheme = 0;
const uint16_t eepromAddrClockMode = 1;
// Gamma correction values
const uint8_t PROGMEM gamma[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
90, 92, 93, 95, 96, 98, 99,101,102,104,105,107,109,110,112,114,
115,117,119,120,122,124,126,127,129,131,133,135,137,138,140,142,
144,146,148,150,152,154,156,158,160,162,164,167,169,171,173,175,
177,180,182,184,186,189,191,193,196,198,200,203,205,208,210,213,
215,218,220,223,225,228,231,233,236,239,241,244,247,249,252,255 };
#endif

View File

@ -1,208 +1,122 @@
// //
// Copyright (c) 2015-2017 jackw01 // Copyright (c) 2016-2018 jackw01
// This code is distrubuted under the MIT License, see LICENSE for details // This code is distrubuted under the MIT License, see LICENSE for details
// //
#include <math.h>
#include <FastLED.h> #include <FastLED.h>
#include <Wire.h> #include <Wire.h>
#include <EEPROM.h> #include <EEPROM.h>
#include "RTClib.h" #include <RTClib.h>
// #include "config.h"
// Adjust these variables to taste
//
// Pin Assignments
const int pinLeds = 3;
const int pinButton = 4;
const int pinBrightness = 0;
const int ledRingSize = 24; // Number of LEDs in ring
// Default colors
CRGB red = CRGB(255, 0, 0);
CRGB orange = CRGB(255, 78, 0);
CRGB yellow = CRGB(255, 237, 0);
CRGB green = CRGB(0, 255, 23);
CRGB cyan = CRGB(0, 247, 255);
CRGB blue = CRGB(0, 21, 255);
CRGB magenta = CRGB(190, 0, 255);
CRGB white = CRGB(255, 255, 255);
CRGB off = CRGB(0, 0, 0);
// Clock face colors
// red, orange, yellow, green, cyan, blue, magenta, and white are acceptable, along with CRGB(r, g, b)
const int colorSchemeMax = 6;
const CRGB colorSchemes[colorSchemeMax + 1][4] = {{off, // Color when only one is needed (deprecated)
red, // Color for hour display
green, // Color for minute display
blue}, // Color for second display
{CRGB(0, 0, 0), CRGB(255, 255, 255), CRGB(255, 255, 255), CRGB(0, 130, 255)},
{CRGB(0, 0, 0), CRGB(255, 255, 255), CRGB(255, 255, 255), CRGB(255, 25, 0)},
{CRGB(0, 0, 0), CRGB(64, 0, 128), CRGB(255, 72, 0), CRGB(255, 164, 0)},
{CRGB(0, 0, 0), CRGB(255, 25, 0), CRGB(255, 84, 0), CRGB(255, 224, 0)},
{CRGB(0, 0, 0), CRGB(0, 0, 255), CRGB(0, 84, 255), CRGB(0, 255, 255)},
{CRGB(0, 0, 0), CRGB(255, 0, 96), CRGB(255, 84, 0), CRGB(0, 255, 164)}};
const int gradientMax = 1;
const CRGB gradients[gradientMax + 1][6] = {{CRGB(72, 0, 96), CRGB(255, 72, 0), CRGB(255, 164, 0), CRGB(255, 224, 0), CRGB(0, 255, 164), CRGB(0, 208, 255)},
{CRGB(72, 0, 96), CRGB(255, 72, 0), CRGB(255, 164, 0), CRGB(255, 224, 0), CRGB(0, 255, 164), CRGB(0, 208, 255)}};
// Setup ends
// Code starts here
const uint8_t PROGMEM gamma[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
90, 92, 93, 95, 96, 98, 99,101,102,104,105,107,109,110,112,114,
115,117,119,120,122,124,126,127,129,131,133,135,137,138,140,142,
144,146,148,150,152,154,156,158,160,162,164,167,169,171,173,175,
177,180,182,184,186,189,191,193,196,198,200,203,205,208,210,213,
215,218,220,223,225,228,231,233,236,239,241,244,247,249,252,255 };
CRGB leds[ledRingSize]; CRGB leds[ledRingSize];
RTC_DS1307 rtc; RTC_DS1307 rtc;
int clockMode, colorScheme, gradient; // Globals to keep track of state
int clockModeMax = 4; int clockMode, colorScheme;
int buttonState = 0; int lastLoopTime = 0;
const int minBrightness = 4; int lastButtonClickTime = 0;
int currentBrightness;
uint8_t previousBrightness[16];
int counter = 0;
int timer = 0;
const int debugMessageInterval = 1000;
int lastDebugMessageTime = 0; int lastDebugMessageTime = 0;
uint8_t currentBrightness;
CRGB handColor, hourColor, minuteColor, secondColor; uint8_t previousBrightness[16];
DateTime now;
void setup() { void setup() {
// Begin serial port
Serial.begin(57600); Serial.begin(serialPortBaudRate);
// Init FastLED // Init FastLED
FastLED.addLeds<NEOPIXEL, pinLeds>(leds, ledRingSize); FastLED.addLeds<NEOPIXEL, pinLeds>(leds, ledRingSize);
FastLED.setTemperature(Halogen); FastLED.setTemperature(Halogen);
FastLED.show(); FastLED.show();
// Connect to the RTC
Wire.begin(); Wire.begin();
rtc.begin(); rtc.begin();
// Set button pin
pinMode(pinButton, INPUT); pinMode(pinButton, INPUT);
colorScheme = EEPROM.read(0); // Read saved config from EEPROM
clockMode = EEPROM.read(1); colorScheme = EEPROM.read(eepromAddrColorScheme);
gradient = 0; clockMode = EEPROM.read(eepromAddrClockMode);
handColor = colorSchemes[colorScheme][0]; // If button is pressed at startup, light all LEDs
hourColor = colorSchemes[colorScheme][1];
minuteColor = colorSchemes[colorScheme][2];
secondColor = colorSchemes[colorScheme][3];
// Serial debug
Serial.println("WS2812B LED Ring Clock by jackw01");
// Light mode
if (digitalRead(pinButton) == LOW) { if (digitalRead(pinButton) == LOW) {
for (int i = 0; i < ledRingSize; i++) leds[i] = white; for (int i = 0; i < ledRingSize; i++) leds[i] = white;
FastLED.show(); FastLED.show();
delay(60000); delay(60000);
} }
// Test animation
for (int i = 0; i < ledRingSize; i++) {
leds[i] = white;
FastLED.show();
delay(40);
}
for (int i = 0; i < ledRingSize; i++) {
leds[i] = off;
FastLED.show();
delay(40);
}
} }
void loop() { void loop() {
int currentTime = millis();
if (digitalRead(pinButton) == LOW && counter >= 14) { if (currentTime - lastLoopTime > runLoopIntervalMs) {
lastLoopTime = millis();
counter = 0; // Handle button
if (digitalRead(pinButton) == LOW && currentTime - lastButtonClickTime > buttonClickRepeatDelayMs) {
delay(280); delay(buttonLongPressDelayMs);
if (digitalRead(pinButton) == LOW) { if (digitalRead(pinButton) == LOW) {
lastButtonClickTime = currentTime;
counter = 0;
colorScheme ++; colorScheme ++;
if (colorScheme > colorSchemeMax) colorScheme = 0; if (colorScheme >= colorSchemeCount) colorScheme = 0;
EEPROM.write(0, colorScheme); EEPROM.write(0, colorScheme);
handColor = colorSchemes[colorScheme][0];
hourColor = colorSchemes[colorScheme][1];
minuteColor = colorSchemes[colorScheme][2];
secondColor = colorSchemes[colorScheme][3];
} else { } else {
clockMode ++; clockMode ++;
if (clockMode > clockModeMax) clockMode = 0; if (clockMode >= ClockModeCount) clockMode = 0;
EEPROM.write(1, clockMode); EEPROM.write(1, clockMode);
} }
} }
if (millis() > lastDebugMessageTime + debugMessageInterval) { // Print debug message
lastDebugMessageTime = millis(); if (currentTime > lastDebugMessageTime + debugMessageIntervalMs) {
lastDebugMessageTime = currentTime;
printDebugMessage(); printDebugMessage();
} }
showClock(); // Update brightness - do a moving average to smooth out noisy potentiometers
delay(20);
counter ++;
if (counter > 40) counter = 40;
timer ++;
if (timer > 255) timer = 0;
}
void showClock() {
// Moving average of brightness to smooth out noisy potentiometers
int sum = 0; int sum = 0;
for (uint8_t i = 15; i > 0; i--) {
for (int i = 15; i > 0; i--) {
previousBrightness[i] = previousBrightness[i - 1]; previousBrightness[i] = previousBrightness[i - 1];
sum += previousBrightness[i]; sum += previousBrightness[i];
} }
previousBrightness[0] = map(analogRead(pinBrightness), 0, 1023, minBrightness, 255); previousBrightness[0] = map(analogRead(pinBrightness), 0, 1023, minBrightness, 255);
sum += previousBrightness[0]; sum += previousBrightness[0];
currentBrightness = sum / 16; currentBrightness = sum / 16;
FastLED.setBrightness(currentBrightness); FastLED.setBrightness(currentBrightness);
if (clockMode == 0) ringClock(); // Show clock
else if (clockMode == 1) dotClock(); now = rtc.now();
else if (clockMode == 2) rainbowDotClock(); clearLeds();
else if (clockMode == 3) timeColorClock(); showClock();
else if (clockMode == 4) glowClock(); }
else if (clockMode == 5) gradientHandsClock();
} }
void printDebugMessage() { // Display the current clock
void showClock() {
switch (clockMode) {
case ClockModeRingClock:
ringClock();
break;
case ClockModeDotClock:
dotClock();
break;
case ClockModeDotClockColorChange:
rainbowDotClock();
break;
case ClockModeDotClockTimeColor:
timeColorClock();
break;
case ClockModeGlowClock:
glowClock();
break;
}
}
// Print debugging info over serial
void printDebugMessage() {
Serial.print("Current date/time: "); Serial.print("Current date/time: ");
DateTime now = rtc.now(); DateTime now = rtc.now();
Serial.print(now.year(), DEC); Serial.print(now.year(), DEC);
@ -223,246 +137,156 @@ void printDebugMessage() {
Serial.println(colorScheme); Serial.println(colorScheme);
Serial.print("Brightness: "); Serial.print("Brightness: ");
Serial.println(currentBrightness); Serial.println(currentBrightness);
Serial.println("");
} }
// Show a ring clock // Show a ring clock
void ringClock() { void ringClock() {
int h = hourPosition();
int m = minutePosition();
int s = secondPosition();
clearLeds(); if (m > h) {
for (int i = 0; i < m; i++) leds[i] = minuteColor();
DateTime now = rtc.now(); for (int i = 0; i < h; i++) leds[i] = hourColor();
int newHour;
int newMinute;
int newSecond;
int hour;
if (now.hour() > 12) hour = (now.hour() - 12) * (ledRingSize / 12);
else hour = now.hour() * (ledRingSize / 12);
newHour = hour + int(map(now.minute(), 0, 59, 0, (ledRingSize / 12) - 1));
newMinute = int(map(now.minute(), 0, 59, 0, ledRingSize - 1));
newSecond = int(map(now.second(), 0, 59, 0, ledRingSize - 1));
if (newMinute > newHour) {
for (int i = 0; i < newMinute; i++) leds[i] = minuteColor;
for (int i = 0; i < newHour; i++) leds[i] = hourColor;
} else { } else {
for (int i = 0; i < newHour; i++) leds[i] = hourColor; for (int i = 0; i < h; i++) leds[i] = hourColor();
for (int i = 0; i < newMinute; i++) leds[i] = minuteColor; for (int i = 0; i < m; i++) leds[i] = minuteColor();
} }
leds[newSecond] = secondColor; if (showSecondHand) leds[s] = secondColor();
FastLED.show(); FastLED.show();
} }
// Show a more traditional dot clock // Show a more traditional dot clock
void dotClock() { void dotClock() {
int h = hourPosition();
int m = minutePosition();
int s = secondPosition();
clearLeds(); for (int i = h - 1; i < h + 2; i++) leds[wrap(i)] = hourColor();
leds[m] = minuteColor();
DateTime now = rtc.now(); if (showSecondHand) [s] = secondColor();
int newHour;
int newMinute;
int newSecond;
int hour;
if (now.hour() > 12) hour = (now.hour() - 12) * (ledRingSize / 12);
else hour = now.hour() * (ledRingSize / 12);
newHour = hour + int(map(now.minute(), 0, 59, 0, (ledRingSize / 12) - 1));
newMinute = int(map(now.minute(), 0, 59, 0, ledRingSize - 1));
newSecond = int(map(now.second(), 0, 59, 0, ledRingSize - 1));
for (int i = newHour - 1; i < newHour + 2; i++) leds[wrap(i)] = hourColor;
leds[newMinute] = minuteColor;
leds[newSecond] = secondColor;
FastLED.show(); FastLED.show();
} }
// Show a dot clock with hands that change color based on their position // Show a dot clock with hands that change color based on their position
void rainbowDotClock() { void rainbowDotClock() {
int h = hourPosition();
int m = minutePosition();
int s = secondPosition();
clearLeds(); CRGB newHourColor = CHSV(map(now.hour(), 0, 24, 0, 255), 255, 255);
CRGB newMinuteColor = CHSV(map(now.minute(), 0, 59, 0, 255), 255, 255);
CRGB newSecondColor = CHSV(map(now.second(), 0, 59, 0, 255), 255, 255);
DateTime now = rtc.now(); for (int i = h - 1; i < h + 2; i++) leds[wrap(i)] = newHourColor;
leds[m] = newMinuteColor;
int newHour; if (showSecondHand) leds[s] = newSecondColor;
int newMinute;
int newSecond;
int hour;
if (now.hour() > 12) hour = (now.hour() - 12) * (ledRingSize / 12);
else hour = now.hour() * (ledRingSize / 12);
newHour = hour + int(map(now.minute(), 0, 59, 0, (ledRingSize / 12) - 1));
newMinute = int(map(now.minute(), 0, 59, 0, ledRingSize - 1));
newSecond = int(map(now.second(), 0, 59, 0, ledRingSize - 1));
CRGB newHourColor = Wheel(int(map(newHour, 0, 12, 0, 255)));
CRGB newMinuteColor = Wheel(int(map(now.minute(), 0, 59, 0, 255)));
CRGB newSecondColor = Wheel(int(map(now.second(), 0, 59, 0, 255)));
for (int i = newHour - 1; i < newHour + 2; i++) leds[wrap(i)] = newHourColor;
leds[newMinute] = newMinuteColor;
leds[newSecond] = newSecondColor;
FastLED.show(); FastLED.show();
} }
// Show a dot clock where the color is based on the time // Show a dot clock where the color is based on the time
void timeColorClock() { void timeColorClock() {
int h = hourPosition();
int m = minutePosition();
int s = secondPosition();
float decHour = decimalHour();
clearLeds(); CRGB pixelColor = CHSV((uint8_t)mapFloat(fmod(20.0 - decHour, 24.0), 0.0, 24.0, 0.0, 255.0), 255, 255);
DateTime now = rtc.now(); for (int i = h - 1; i < h + 2; i++) leds[wrap(i)] = pixelColor;
leds[m] = pixelColor;
int newHour; if (showSecondHand) leds[s] = pixelColor;
int newMinute;
int newSecond;
int decimalHour;
int hour;
if (now.hour() > 12) hour = (now.hour() - 12) * (ledRingSize / 12);
else hour = now.hour() * (ledRingSize / 12);
newHour = hour + int(map(now.minute(), 0, 59, 0, (ledRingSize / 12) - 1));
newMinute = int(map(now.minute(), 0, 59, 0, ledRingSize - 1));
newSecond = int(map(now.second(), 0, 59, 0, ledRingSize - 1));
decimalHour = now.hour() + map(now.minute() + map(now.second(), 0, 59, 0, 1), 0, 59, 0, 1);
CRGB pixelColor = Wheel(map((20 - decimalHour) % 24, 0, 24, 0, 255));
for (int i = newHour - 1; i < newHour + 2; i++) leds[wrap(i)] = pixelColor;
leds[newMinute] = pixelColor;
leds[newSecond] = pixelColor;
FastLED.show(); FastLED.show();
} }
// Show a dot clock where the hands overlap with additive blending // Show a dot clock where the hands overlap with additive blending
void glowClock() { void glowClock() {
int h = hourPosition();
clearLeds(); int m = minutePosition();
int s = secondPosition();
DateTime now = rtc.now();
int newHour;
int newMinute;
int newSecond;
int hour;
if (now.hour() > 12) hour = (now.hour() - 12) * (ledRingSize / 12);
else hour = now.hour() * (ledRingSize / 12);
newHour = hour + int(map(now.minute(), 0, 59, 0, (ledRingSize / 12) - 1));
newMinute = int(map(now.minute(), 0, 59, 0, ledRingSize - 1));
newSecond = int(map(now.second(), 0, 59, 0, ledRingSize - 1));
for (int i = -6; i < ledRingSize + 6; i++) { for (int i = -6; i < ledRingSize + 6; i++) {
int j; int j;
for (j = 0; j <= 4; j++) { for (j = 0; j <= 4; j++) {
if (newHour + j == i || newHour - j == i) blendAdd(wrap(i), CRGB(255, 0, 0), 1 - mapFloat(j, 0, 6, 0.1, 0.99)); if (h + j == i || h - j == i) blendAdd(wrap(i), CRGB(255, 0, 0), 1 - mapFloat(j, 0.0, 6.0, 0.1, 0.99));
} }
for (j = 0; j <= 2; j++) { for (j = 0; j <= 2; j++) {
if (newMinute + j == i || newMinute - j == i) blendAdd(wrap(i), CRGB(0, 255, 0), 1 - mapFloat(j, 0, 3, 0.1, 0.99)); if (m + j == i || m - j == i) blendAdd(wrap(i), CRGB(0, 255, 0), 1 - mapFloat(j, 0.0, 3.0, 0.1, 0.99));
} }
if (showSecondHand) {
for (j = 0; j <= 1; j++) { for (j = 0; j <= 1; j++) {
if (newSecond + j == i || newSecond - j == i) blendAdd(wrap(i), CRGB(0, 0, 255), 1 - mapFloat(j, 0, 1, 0.1, 0.65)); if (s + j == i || s - j == i) blendAdd(wrap(i), CRGB(0, 0, 255), 1 - mapFloat(j, 0.0, 1.0, 0.1, 0.65));
}
} }
} }
FastLED.show(); FastLED.show();
} }
// Show a clock with gradient colored hands // Get positions mapped to ring size
void gradientHandsClock() { int hourPosition() {
if (twelveHour) {
clearLeds();
DateTime now = rtc.now();
int newHour;
int newMinute;
int newSecond;
int hour; int hour;
if (now.hour() > 12) hour = (now.hour() - 12) * (ledRingSize / 12); if (now.hour() > 12) hour = (now.hour() - 12) * (ledRingSize / 12);
else hour = now.hour() * (ledRingSize / 12); else hour = now.hour() * (ledRingSize / 12);
return hour + int(map(now.minute(), 0, 59, 0, (ledRingSize / 12) - 1));;
newHour = hour + int(map(now.minute(), 0, 59, 0, (ledRingSize / 12) - 1)); } else {
newMinute = int(map(now.minute(), 0, 59, 0, ledRingSize - 1)); int hour = now.hour() * (ledRingSize / 24);
newSecond = int(map(now.second(), 0, 59, 0, ledRingSize - 1)); return hour + int(map(now.minute(), 0, 59, 0, (ledRingSize / 24) - 1));;
}
for (int i = 0; i < 6; i++) blendAdd(wrap(i + (newHour - 1)), gradients[gradient][i], 0.8);
for (int i = 0; i < 4; i++) blendAdd(wrap(i + (newMinute - 1)), gradients[gradient][i + 2], 0.9);
for (int i = 0; i < 2; i++) blendAdd(wrap(i + (newSecond - 1)), gradients[gradient][i + 4], 1);
FastLED.show();
} }
void clearLeds() { int minutePosition() {
return map(now.minute(), 0, 59, 0, ledRingSize - 1);
}
int secondPosition() {
return map(now.second(), 0, 59, 0, ledRingSize - 1);
}
float decimalHour() {
return (float)now.hour() + mapFloat(now.minute() + mapFloat(now.second(), 0.0, 59.0, 0.0, 1.0), 0.0, 59.0, 0.0, 1.0);
}
// Get colors
CRGB hourColor() {
return colorSchemes[colorScheme][0];
}
CRGB minuteColor() {
return colorSchemes[colorScheme][1];
}
CRGB secondColor() {
return colorSchemes[colorScheme][2];
}
// Clear the LED ring
void clearLeds() {
for (int i = 0; i < ledRingSize; i++) leds[i] = CRGB(0, 0, 0); for (int i = 0; i < ledRingSize; i++) leds[i] = CRGB(0, 0, 0);
} }
// Enhanced additive blending // Enhanced additive blending
void blendAdd(int position, CRGB color, double brightness) { void blendAdd(int position, CRGB color, float factor) {
leds[position].r += color.r * factor;
leds[position].r += color.r * brightness; leds[position].g += color.g * factor;
leds[position].g += color.g * brightness; leds[position].b += color.b * factor;
leds[position].b += color.b * brightness;
} }
// Wrap around LED ring // Wrap around LED ring
int wrap(int i) { int wrap(int i) {
if (i >= ledRingSize) return i - ledRingSize; if (i >= ledRingSize) return i - ledRingSize;
else if (i < 0) return ledRingSize + i; else if (i < 0) return ledRingSize + i;
else return i; else return i;
} }
// Because Arduino does not // Because Arduino does not
float mapFloat(float x, float in_min, float in_max, float out_min, float out_max) { float mapFloat(float x, float inMin, float inMax, float outMin, float outMax) {
return (x - inMin) * (outMax - outMin) / (inMax - inMin) + outMin;
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
// Input a value 0 to 255 to get a color value.
// The colours are a transition r - g - b - back to r.
CRGB Wheel(byte WheelPos) {
WheelPos = 255 - WheelPos;
if (WheelPos < 85) return CRGB(255 - WheelPos * 3, 0, WheelPos * 3);
else if (WheelPos < 170) {
WheelPos -= 85;
return CRGB(0, WheelPos * 3, 255 - WheelPos * 3);
} else {
WheelPos -= 170;
return CRGB(WheelPos * 3, 255 - WheelPos * 3, 0);
}
} }